CHOC-UCI origami mask project gets some national attention

Back in the early days of the COVID-19 pandemic, in late March 2020, Jonathan Realmuto, a visiting scientist at CHOC and a postdoctoral researcher at UC Irvine, got a call from his lab leader, Dr. Terence Sanger.

Dr. Sanger, a physician, engineer, and computational neuroscientist who joined CHOC in January 2020 as its vice president of research and first chief scientific officer, was concerned about the possibility of CHOC running out of masks for its frontline healthcare workers.

“Could you please think about this problem and see if you can come up with a solution just in case the supply runs out?” Dr. Sanger asked Realmuto, who has a Ph.D. in mechanical engineering and whose expertise is wearable robotics, which help people regain and strengthen their movements.

Dr. Terence Sanger, chief scientific officer at CHOC

Since September 2017, the two had been working together after Realmuto earned his doctorate degree from the University of Washington.

Thus began the UCI Face Mask Project, a collaboration between Dr. Sanger and Realmuto that grew to a team of five that includes two other UCI professors, aerosol chemist Jim Smith and environmental toxologist Michael Kleinman, and Michael Lawler, an atmospheric chemist and assistant project scientist who works in Smith’s lab.

The work of the UCI Face Mask Project ultimately led to the creation of what experts call a mask for the masses — an inexpensive face covering that takes its cues from origami, the art of paper folding closely associated with Japanese culture.

No sewing is needed to make the origami mask – just a filter material that can be purchased at a craft or hardware store, a stapler, two elastic straps, and a nose clip fashioned from a metal wire such as a twist tie.

Illustrated directions for creating the origami mask

Realmuto was among several origami mask experts recently featured in a National Geographic story that highlights the inexpensive (less than $1 of materials per mask), disposal masks that can be made by anyone after a little practice. The story details how origami pleats and interlocking folds can result in better-fitting, more comfortable, and more stylish face coverings.

Dr. Sanger, who served in an advisory capacity on the UCI Face Mask Project, played a “very critical role” in developing the mask, which has not been mass produced but was designed in case there is a shortage of face coverings such as N95 masks, the gold standard at preventing expelled air leakage during coughing.

“CHOC and UCI were one of the first out of the gate to work on this,” says Realmuto, who with his colleagues has written a paper, “A Sew-Free Origami Mask for Improvised Respiratory Protection,” that details the research that went into the project.

The team put several masks through rigorous testing using a custom-made mannequin head equipped with a breathing tube and mounted inside a chamber.

The team concluded, in the paper they plan to get reviewed by peers and published, that origami masks combine high filtration efficiency with ease of breathing, minimal leakage that can dramatically reduce overall mask performance, and greater comfort compared to some commercial alternatives.

Because of this, origami face coverings are “likely to promote greater mask-wearing tolerance and acceptance,” the researchers concluded in their paper.

Says Realmuto: “Origami presents this really nice solution where you can use the folds as a way to make seams that won’t leak.”

The team produced a how-to video starring Realmuto, who shows how to construct the single-use masks. They tested a variety of materials that have an inner layer of non-woven polypropylene that can be easily and rapidly sourced locally from a hardware or craft store, in addition to a material made by Filti that can be purchased through the manufacturer.

“For a novice without prior experience,” they write, “construction takes approximately 10 minutes. In our experience, practice decreases assembly time to under five minutes.”

Dr. Sanger and Realmuto have collaborated on another unrelated project that earned them accolades. That project involved developing a non-rigid forearm orthosis – a brace to correct alignment or provide support – to help make it easier for people with movement disorders such as cerebral palsy to feed themselves, open doors, and complete other daily tasks. Their work made them finalists in the Best Paper category at the 2019 Institute of Electrical and Electronics Engineers (IEEE) Conference on Soft Robotics.

In July 2021, Realmuto will become a full-time assistant professor in the Department of Mechanical Engineering at UC Riverside. He says he hopes to maintain his collaboration with Dr. Sanger and CHOC on future projects.

“It’s been a great partnership,”Realmuto says.

For more information about the UCI Face Mask Project, click here.

Related posts:

CHOC clinicians pitch ideas for new medical devices to UCI students

In the neonatal intensive care unit (NICU) at CHOC, most pre-term babies are not able to take all their food through a bottle until they’re closer to term. They also must rely on a tube connected to a feeding pump.

In hospitals that have a centralized room where technicians prepare feedings for the nurse, the feeding is often delivered pre-drawn up in a syringe since it is unknown if all of the feeding will be given via the tube or if the baby will be able to take some by mouth.

If the baby is alert enough to eat by mouth, the nurse would need to transfer some of the feeding from the syringe to a bottle. If the baby did not take the full volume in the bottle, the nurse would need to draw any remaining milk back into the syringe to be able to deliver it via a tube.

Because of all these steps, there’s a risk of contamination, misadministration (giving the wrong milk to the wrong baby) and a loss of nutrients caused by milk adhering to the side of the containers.

Wouldn’t it be great to create a device that could solve those concerns and make feeding premature infants safer and more efficient?

That was the concept presented by Michelle Roberts, a registered nurse and lactation consultant, to UCI biomedical engineering graduates at the annual UCI BioENGINE Reverse Project Pitch Night.

Undergraduates students in the BioENGINE Program (Bioengineering Innovation & Entrepreneurship) obtain hands-on experience in the technical and business development aspects of biomedical engineering as they work in teams to further develop med-tech startups into marketable products.

Roberts was among several CHOC associates who gave two-minute presentations at the Fall 2020 Reverse Project Pitch Night, held online because of the COVID-19 pandemic. Kicking off the 90-minute session, which featured some 30 presenters, was Dr. Terence Sanger, a physician, engineer and computational neuroscientist who joined CHOC in January 2020 as its vice president of research and first chief scientific officer.

BioENGINE partners with the UCI School of Medicine, the Henry Samueli School of Engineering, the Donald Bren School of Information and Computer Sciences, the Beckman Laser Institute, UCI Athletics and UCI Applied Innovation. 

At Reverse Project Pitch Night, physicians, scientists, clinicians and industry representatives describe their concepts for new medical devices. Students are matched with projects that interest them and are mentored by the presenters to help develop healthcare solutions.

“Physicians and engineers need to work together,” said Dr. Sanger, a child neurologist who specializes in movement disorders. “The goal is to identify an important problem, marry it to a piece of technology, and create a device in a way that will have an impact. Different knowledges have to be brought together, and personally I find that very inspiring.”

In the final quarter of 2020, the CHOC Research Institute sponsored three pediatric-focused projects that were presented at Reverse Project Pitch Night.

One software project, presented by Sira Medical, involves the use of patient-specific, high fidelity 3D holograms to enable surgeons to better understand complicated anatomy, collaboratively plan an operation, and virtually size medical implants — all before stepping into the operating room.

Another project, presented by Adventure BioFeedback, is designed to deliver speech therapy anywhere, anytime. The company is producing a series of audio linguistic tools that can analyze and learn on-the-fly from the utterances of children performing vocal exercises using a smartphone. 

The third CHOC Research Institute-sponsored project, NeuroDetect, places a patient’s own stem cells on a computer chip to replicate the brain chemistry of the neurological disorder in a laboratory environment and facilitate rapid development of precision-guided therapeutics.  

Roberts offered to serve as a mentor on her project along with Caroline Steele, director of Clinical Nutrition and Lactation Services at CHOC. Edwards Lifesciences is involved in designing the device.

Kaitlin Hipp, another CHOC NICU nurse, introduced her project, Touche, at BioENGINE Reverse Project Pitch Night. It’s a hands-free communications system for nurses and healthcare workers that is especially relevant in the era of COVID-19. The Bluetooth device can communicate with several devices – phones, monitors, etc. — thereby reducing or eliminating the need for nurses to touch the surfaces of items.

“We need to be better about using touchless technology in the healthcare setting,” Hipp said. “Long term, think of this as Alexa for healthcare providers.”

Dr. Timothy Flannery, a pediatric endocrinologist at CHOC, introduced Cervos, a non-invasive device to address cervical incompetence, which affects 1 percent of all pregnancies. The goal is to get Cervos approved for clinical trials at medical schools, Dr. Flannery said.

Dr. Sanger, in his remarks, noted CHOC’s critical mission of ramping up research to better address unmet healthcare needs by marrying engineering with healthcare.

“Medicine is about decision making,” Dr. Sanger said. “Biology is so complicated we can’t hope to ever understand it fully. When you want to make decisions in healthcare, you need to take measurements and design interventions that will respond to those measurements. In medicine, the goal is always to make the next big decision. You don’t even need to know the diagnosis if you can make the right decisions.”

Artificial intelligence seen as critical tool in helping to diagnose rare diseases

Machine learning algorithms could make a dramatic difference when it comes to diagnosing children with rare diseases, two CHOC doctors said in a recent webinar.

Although the use of artificial intelligence (AI) in diagnosing medical conditions is in its infancy stages, the potential is huge, said Dr. Jose Abdenur and Dr. Terence Sanger, speaking on a panel during a two-week summit on rare diseases hosted by Global Genes, an Aliso Viejo-based non-profit that advocates for the rare disease community.

“Human decision making is very, very good,” said Dr. Sanger, vice president for research and chief scientific officer at CHOC. “But we’re not very good at incorporating tens of thousands of pieces of information into making these decisions.”

That’s where machine learning could be of immense value, he and Dr. Abdenur said in the one-hour discussion on Sept. 22, which can be viewed in its entirety here.

Machine learning involves the use of computer algorithms that improve automatically by building mathematical models based on reams of data. This makes AI particularly valuable for improving the rare disease diagnosis process, which remains far from perfect, says Abdenur, chief of the division of metabolic disorders at CHOC and director of CHOC’s metabolic laboratory.

Although great strides are being made in diagnosing rare diseases through such processes as rapid whole genome sequencing, 40 percent of families with sick children still do not have diagnoses, Dr. Abdenur said.

“We’re doing better, but we’re definitely not good enough,” he said. “We hope in the future that artificial intelligence and machine learning will help us (reach diagnoses faster).”

In diagnosing patients, clinicians consider a list of possible conditions or diseases that could be causing symptoms – what’s known as making a differential diagnosis. They consider such things as a patient’s symptoms, his or her medical history, basic lab results, and a physical examination.

With AI, a virtually limitless amount of information beyond that – such as similar symptoms that have occurred in patients around the world, the environment they live in, etc. – could be factored into helping make differential diagnoses.

Dr. Sanger compared the benefits of using AI in diagnosing patients to a standard camera – what’s used now – to a wide-angel lens that can take in much more information, which machine learning would provide.

“If you have an avalanche of information, (physicians) can’t take all of it in themselves,” Dr. Abdenur noted.

But a sophisticated machine-learning program could, he and other panelists said.

An algorithm that gets smarter over time would lead to faster, simpler, accurate, and earlier diagnoses, said panel member Annastasiah Mhaka, co-founder of the Alliance for AI in Healthcare.

“Data is at the heart of (learning more about rare childhood diseases), and AI would help along every step of the way,” said another panelist, Sebastien Lefebvre, an analyst with Alexion Pharmaceuticals.

Both Dr. Abdenur and Dr. Sanger agreed that AI could be used to augment a clinician’s decision, but never replace it.

“(AI) never makes a decision for you,” Sanger said. “It just assists in the decision making.”

Newly emerging technologies such as machine learning in healthcare could lead to lower healthcare costs and better treatment, Mhaka said.

“Diagnosis needs are huge and unmet in the (rare disease) population,” she noted.

Learn more about rare disease research at CHOC.

Wired for hope: deep brain stimulation for dystonia

Every morning when she awakes, Sydney Amato begins her daily battle with her body.

If she’s lucky, the 16-year-old will have gotten a handful of hours of uninterrupted sleep – dreaming, perhaps, of doing what most healthy kids her age take for granted:

Hanging out with friends. Going to school. Learning to drive.

Because of a neurological condition called dystonia, Sydney, who is in excellent cognitive health but speaks and walks with some difficulty, suffers from involuntary and near-constant contraction of muscles in her neck, arms, legs and trunk.

Sydney with her father, Louis

Her mind is unable to control the painful jerking that makes most of her body twist and go rigid, her muscles moving out of normal sequence.

Born a right-hander, she can feed herself with some struggle using her left hand. She wants to dress and put on makeup herself, but those normally simple tasks become lengthy ordeals.

“My body fights me all the time,” says Sydney, trying to distract herself in her hospital bed by watching an old episode of “Keeping Up with the Kardashians.” Listening to her favorite music – Ariana Grande, Lauren Daigle, Drake – can only temporarily transport Sydney away from her debilitating condition.

“She knows what she wants to do,” says her father, Louis. “But her body won’t let her.”

Specialists at CHOC are working hard to change that.

A first for CHOC

On Aug. 14, 2020, a team led by Dr. Terence Sanger, a physician, engineer, and computational neuroscientist who joined CHOC in January 2020 as its first chief scientific officer, and Dr. Joffre E. Olaya, CHOC’s functional restorative neurosurgeon, implanted several temporary electrodes into Sydney’s brain.

Dr. Terence Sanger, a physician, engineer, and computational neuroscientist and CHOC’s chief scientific officer

The surgery marked the first time a patient with a movement disorder at CHOC underwent a procedure called deep brain stimulation (DBS).

Working in perfect harmony as a team, Dr. Sanger and Dr. Olaya performed the first stage of a three-stage surgery on Sydney. As the surgeon, Dr. Olaya placed the leads following advice from Dr. Sanger, the neurologist, where they should go.

In the procedure, millimeter-thick electrodes were precisely positioned into the basal ganglia region of Sydney’s brain – about three inches deep. The surgery involved the use of the ROSA Robot, the same tool that has been used during brain surgery on epilepsy patients at CHOC since 2015.

Dr. Joffre E. Olaya, CHOC pediatric neurosurgeon

Considered one of the most advanced robotized surgical assistants, ROSA includes a computer system and a robotic arm. It’s a minimally invasive surgical tool that improves accuracy and significantly reduces surgery/anesthesia time.

The ROSA Robot helped with implanting and targeting the electrodes, and a portable operating-room CT scanner confirmed their position.

Turning down the volume

DBS is designed to ease Sydney’s condition by sending electrical currents to jam her malfunctioning brain signals.

Think of turning down the volume on your car radio.

“Nobody really understands the cause of dystonia,” Dr. Sanger explains, “but there’s probably too much electrical stimulation going on in the motor areas of the brain. We’re trying to calm down that extra noise.”

Although DBS dates to the 1960s, it wasn’t until the 1980s that the modern era of using it to treat adult patients with tremor and Parkinson’s disease began.

In 2000, Dr. Sanger, working with engineers, data scientists, neurosurgeons, and others, began implanting electrodes in pediatric patients.

Instead of the established method of placing the leads at predetermined sites and hoping they worked, Sanger and his team, just as they did in Sydney’s case, placed temporary leads to best assess where they should go permanently based on patient response.

In 2016, Dr. Sanger began honing DBS to treat children with dystonia. Before the surgery on Sydney, Dr. Sanger had performed DBS on 26 children using the same three-stage technique. He says 80 percent of those children have seen successful results.

Early signs

Sydney began showing symptoms of dystonia – tremors in her hands — when she was 5 ½ years old.

A year later, she was using a wheelchair. She had her first brain surgery at age 7.

Since then, “she’s been all over the U.S.” seeking the right treatment for her condition after several setbacks, says her father.

But her condition was not improving.

Early this year, a neurologist in Kansas City, Mo., recommended that Sydney see Dr. Sanger.

“I asked him, ‘If Sydney was your kid, where would you go?’ Louis Amato recalls. “He said, ‘Hands down, Dr. Sanger.’”

The COVID-19 pandemic pushed Sydney’s surgery to mid-August.

Sydney already had two electrodes in her brain that were only partially working when she came to CHOC in early August for surgery.

After two extensive run-throughs with their team, Dr. Sanger and Dr. Olaya, in a six-hour procedure that at one point had nearly 20 people in the operating room, implanted more electrodes to give her a total of nine.

On Thursday, Aug. 20, six days after Sydney’s surgery, Dr. Sanger stopped by her room at CHOC Hospital. The room was decorated in purple, Sydney’s favorite color.

Dr. Sanger greeted her as CHOC staff members, joined by members of Sanger Lab, which conducts research in pediatric movement disorders, prepared to have Sydney walk back and forth down a hallway while connected to electrical equipment programmed to record signals in her brain and muscles.

A thick coil of multicolored wires snaked from under a large white bandage covering Sydney’s head. Extending about 6 feet, the wires were plugged into specialized recording equipment controlled by Jennifer MacLean, a pediatric nurse practitioner whose job was to manipulate the strength of electrical charges affecting the four points of contact on each electrode.

The goal: determine which charges worked best and on which electrodes.

“It could have turned out that the DBS procedure made no difference,” Dr. Sanger says. “But we’ve seen a very good response in Sydney.”

For example, her once mostly useless right hand was working much better.

“It gives you goosebumps,” Louis Amato says.

After taking a bite of a veggie burger and sipping some water, Sydney started to walk.

Following her were seven CHOC and Sanger Lab specialists.

“Go nice and slowly,” Jennifer told Sydney. “You’re going too fast for us!”

Perhaps Sydney was anxious to get back to riding Tigger, a quarter horse, in her hometown of Carthage, Mo. She has been riding him for six months.

Sydney is eager to get back to riding her favorite horse, Tigger.

“Her balance isn’t bad on the horse,” says Louis Amato.

Sydney also loves to tan by her pool and swim.

What she wants most, however, is to be freed from her body so she can return to school and do what most teens enjoy.

“It’s stressful,” says her mother, Angie. “She has a lot of friends her age, but she can’t do a lot of the things they do. She has her days when she can get really upset.”

Now, however, working with Dr. Sanger, Dr. Olaya and the entire team at CHOC, the Amatos are more optimistic than ever.

“We’re hopeful that this is going to be a big life-changer for her,” Angie Amato says. “That would be the best thing that could ever happen – better than winning the lottery.”

‘The A Team’

After crunching numbers for a week to assess which of the nine electrodes proved to be the most effective based on how Sydney responded to varying degrees of electrical currents, Dr. Sanger and his team settled on four electrodes that were permanently used to treat her condition – three new ones, and one existing one.

The team performed this second surgery on Sydney in late August.

In the third and final surgery, successfully completed in early September, a rechargeable generator that powers the DBS leads was implanted in Sydney’s chest.

“As we get better and better at this,” says Dr. Sanger, “and as the technology progresses, we’ll be able to do this on kids who are less sick than Sydney.”

Dr. Sanger and Dr. Olaya are poised to dramatically improve the lives of many more patients like Sydney at CHOC.

“I’m really excited that we will be doing more of these procedures to help pediatric patients with movement disorders and significantly improve their quality of life,” says Dr. Olaya. “I look forward to continuing to provide this type of personalized care.”

Angie and Louis Amato say Sydney has never gotten this much special attention during her 11-year-plus medical journey.

“Here at CHOC,” Louis Amato says, “we feel like we’re with the A Team.”

Says Sydney: “I’ve never felt this much confidence and this good about treatment before.”

Learn more about deep brain stimulation (DBS) surgery at CHOC.

CHOC, University Lab Partners establish unique training program for the next generation of biotech innovators

The CHOC Research Institute and University Lab Partners (ULP) have jointly developed a new science, technology, engineering, and mathematics (STEM), medical innovation and entrepreneurship program geared toward inspiring Orange County high school students to become the next generation of biotech innovators. 

Through the Medical Innovation and Entrepreneurship program, students will work alongside Orange County’s top leaders in innovation and medicine to gain a real-world view of the multidisciplinary skills needed to thrive in the biotech entrepreneurial world.

The program takes students on a journey from idea to innovation, while gaining the understanding of what is required to implement their vision. Student teams will work with industry mentors to solve real-world unmet clinical needs presented by CHOC clinicians, devising a proof-of-concept, an IP and patent strategy, and exit plan that they will pitch to industry leaders on the final day.

Through pediatric-focused case studies, customized lesson plans, team project work, and mentor opportunities, students will identify real-world solutions to issues that directly impact pediatric patients. Students will learn the role a clinician and engineer play as they navigate unmet clinical needs, hospital systems, care providers, and regulatory trends required for healthcare innovation.

In addition, The Young Entrepreneur OC will foster the next generation of leaders through the transformative experience of building a startup. While teaching the skills to build and lead a company, the program also coaches young people to identify and leverage successful pathways to reach personal and professional goals.

“The CHOC Research Institute is thrilled for the opportunity to help inspire the next generation of leaders in healthcare innovation, potentially laying the groundwork for great strides in translational science, medical device development, and basic science research,”  said Dr. Terence Sanger, CHOC’s vice president of research and chief scientific officer.

During the two-week program delivered through the North Orange County ROP, 60  students from five different school districts will learn the business of medtech and biotech through 50 hours of instruction, 10 hours of dedicated mentorship, and 20 hours of clinical needs assessments, project proposals/presentations, literature reviews, and intellectual property challenges. Students will earn 2.5  UC-transferable credits for their participation.

“By connecting our most precious commodity, our students, to businesses who will invest in them, this partnership benefits us all,” said Dr. Terri Giamarino, superintendent of NOCROP. “We want our students to remain in Orange County and be a part of our growth and sustainability.”

Said Dr. George Tolomiczenko, director of medical innovations at University of California, Irvine: “Clinical needs can take many forms in a healthcare setting. Success in meeting an unmet need relies on understanding the target disease, its underlying etiologies and subgroups. I’m looking forward to teaching these high school students how to refine an unmet clinical need.”

The Medical Innovation and Entrepreneurship High School work-based learning program is one of many projects that will launch from the partnership between the CHOC Research Institute and University Lab Partners. The effort brings together clinical skills, business development skills, hospital management, technology strategy, product ideation, and technology development to help support the larger Orange County biotech and medtech community.

“This partnership is a powerful collaboration that will help generate the energy needed to transform the healthcare industry through leading technology products and platforms. This immersive program transforms career exploration and discovery for Orange County students interested in pursuing an exciting career in innovation” said Karin Koch, ULP’s ecosystem director. 

Learn more about the CHOC Research Institute.